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Abstract

The motivation for this work is the real-time solution of a standard optimal control problem

arising in robotics and aerospace applications. For example, the trajectory planning problem

for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie

Group SE(3), which is also a parallelizable Riemannian manifold. For an optimal control prob-

lem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order

necessary conditions employing calculus of variations. The use of frame co-ordinates means that

intrinsic quantities like the Levi-Civita connection and Riemannian curvature tensor appear in

the equations for the co-states. The resulting equations are singularity-free and considerably

simpler (from a numerical perspective) than those obtained using a local co-ordinates repre-

sentation, and are thus better from a computational point of view. The first order necessary

conditions result in a two point boundary value problem which we successfully solve by means

of a Modified Simple Shooting Method.
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1 Introduction

This paper studies regular solutions of optimal control problems for simple mechanical systems

both from a theoretical and a computational point of view. The motivation for this paper is the

real-time trajectory planning problem for hypersonic aircraft. The usual separation of time-scales

assumption that is made for air-vehicles fails for such aircraft. Therefore the trajectory planning

must be done simultaneously for both the attitude and position variables. An air-vehicle can be

thought of as evolving on the tangent bundle of the Lie Group SE(3) with a Riemannian metric

that is obtained from the total kinetic energy. We assume that the center-of-mass and principal

moments-of-inertias do not change during the flight, and consider the aerodynamic forces and

moments to be input variables.

Jurdejevic [1] and Krishnaprasad [2] have considered optimal control problems for left-invariant

systems on Lie Groups, with the input variables affecting the velocity vector field on the configu-

ration space. Simple mechanical systems that are the focus of this paper, with forces and moments

as inputs, do not satisfy this framework. Sussmann [3] tackled the problem of generalizing the

Pontryagin’s Minimum Principle to manifolds (without any affine-connection structure), by devel-

oping the co-ordinate free maximum principle. For computational purposes, when this principle is

applied to an air-vehicle problem, one employs local co-ordinates and the equations reduce to the

necessary conditions for an optimal control problem in co-ordinates. Local co-ordinates might not

be the best choice possible for the real-time computation of the optimal trajectory when one has

an additional Lie Group structure. This is because a suitable choice of co-ordinates depends on the

initial and final conditions on the optimal control problem, which makes it unsuitable for real-time

computation of optimal trajectories. If the configuration space is a connected Lie Group G with

Lie Algebra G, then one can represent any point as a product of exponentials using the exponential

map, exp : G → G. In general, this map is not globally one-to-one or onto, but in the case of groups

that semi-direct products of a connected and compact group and a connected Abelian group, it

is globally one-to-one and onto (except on a set of measure zero). Such groups arise naturally in

robotics and simple mechanical systems. The first order necessary conditions obtained in this paper

using frame co-ordinates on the tangent bundle are especially suited for real-time computation in

such applications. We obtain our results for a parallelizable Riemannian manifold, though our main

interest lies in simple mechanical systems on Lie Groups. Thus the method is frame dependent

rather than invariant. This approach can also be seen in the work of P. Crouch, M. Camarinha
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and F. Silva Leite [4, 5, 6]. Crouch et al. consider a special case of the problem investigated in

this paper. Their work and ours differ in the nature of variations considered, and therefore the

necessary conditions obtained in this paper are different from those of Crouch et al.

The main motivation for the choice of frame co-ordinates, is that the resulting first-order nec-

essary conditions can be solved using a numerical method called the Modified Simple Shooting

Method [7]. Though numerical methods for optimal control problems on local co-ordinates have a

long history, there is a dearth of literature on numerical methods using frame co-ordinates. This

paper, we believe, is the first to address this issue. Usually optimal control problems in local co-

ordinates are tackled either by a direct method [8, 9] using non-linear programming methods, or by

an indirect method that uses Pontryagin’s Minimum Principle, resulting in a two-point boundary

value problem [10, 11]. In this paper, we use the indirect approach to the solution of an optimal

control problem. Among the indirect methods, the Modified Simple Shooting Method (MSSM) has

been shown to be more accurate and resulting in faster computation times than other methods

such as the Multiple Shooting (MSM), Finite Difference and Collocation methods [7]. In related

research, it was found that the earlier MSM failed to converge numerically for an optimal control

problem on TSO(3) while using frame co-ordinates, while the MSSM converged successfully [12].

In this paper, we consider the more complex problem of a rigid body and show that the MSSM

converges successfully in this case also.

2 Optimal Control on Parallelizable Riemannian Manifolds

In this section, we derive necessary conditions for regular solutions of optimal control problems

on parallelizable Riemannian manifolds. Previous work in this area was done by P. Crouch, M.

Camarinha and F. Silva Leite in a series of papers [4, 5, 6]. They considered a special case of the

problem considered here and use a different approach to obtain first-order necessary conditions.

2.1 Parallelizable manifolds and Cartan Formalism

The mathematical background in Riemannian geometry used in this paper can be found in standard

sources such as Frankel [14] or Boothby [15]. If there exists a set of n smooth vector fields on a

manifold M of dimension n that are linearly independent at each point, then the manifold M is said

to be parallelizable [15]. Such a set of n linearly independent vector fields is referred to as a field of

co-ordinate frames or briefly as a frame. It is well known that the condition of being parallelizable
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is very special for a manifold. For example, among the spheres Sn, n = 1, 2, · · · , only S1, S3 and

S7 are parallelizable. However, it is well known that all Lie Groups are parallelizable [15]. In the

case of air vehicles, the configuration space is the Lie Group SE(3). However the manifold on which

the air vehicle dynamics can be described is TSE(3) - the tangent bundle of SE(3). The following

lemma states that TSE(3) is parallelizable. The proof follows from the observation that locally

TM is a product manifold U × IRn where U is a co-ordinate neighborhood of M.

Lemma 2.1 Let M be a parallelizable manifold. Then TM is parallelizable.

Let M be a manifold with a symmetric, positive definite, and bilinear form (called a Riemannian

metric) defined on TqM where q ∈ M, denoted by < ·, · >q . We assume it to be smooth for each

q ∈ M and C1 as a function of q. A Riemannian metric defines a linear isomorphism: Σ : TqM →
T ∗q M (where q ∈ M and T ∗q M is the dual of TqM) by: (Σ(v)) (w):= < v, w >q; v, w ∈ TqM. As

Σ is an isomorphism, we also have the inverse map Σ−1 : T ∗q M → TqM where q ∈ M.

Assume M to be parallelizable and consider a frame {Ei} and a dual co-frame {θi}, i = 1, 2, · · ·n
with θi(Ej) = δi

j . Then the Levi-Civita connection is defined by the functions ωk
ij(q) in the equation:

∇EiEj = ωk
ijEk, 1 ≤ i, j ≤ n. If we denote ωk

j :=ωk
ij θi, then we can define the n× n matrix ω of

connection one-forms by ω = (ωk
j), where k indicates the row index and j the column index. The

following proposition is useful in the computation of ω :

Proposition 2.1 [15] Let < Ei, Ej >= mij . Define dθ = (dθ1, · · · , dθn). Then there is a unique

matrix of 1-forms ω =
(
ωi

j

)
such that: dθ = −ω∧θ, that is, dθi = −ωi

j ∧θj and ωr
imrj +ωr

jmri =

0; i, j = 1, · · · , n.

The computation of dθi is done using Theorem 4.25 of Frankel [14]. Cartan showed that the

curvature tensor R(·, ·), · can be computed from the connection matrix as follows:

Proposition 2.2 [14] The equations Ω = dω+ω∧ω, that is, Ωi
j = dωi

j +ωi
k∧ωk

j define a skew-

symmetric matrix of 2-forms that is related to the curvature tensor via R(X, Y )Ej = Ωi
j (X, Y ) ·Ei.

2.2 Derivation of first-order necessary conditions

Let M be a parallelizable Riemannian manifold. If c : [0, 1] → M is a differentiable curve on M, and

X : M → TM is a differentiable vector field, then the co-variant derivative of X along c(·) is defined

to be DX
dt = ∇ċ(t)X(t), t ∈ (0, 1). Let {E1, · · · , En} be a frame of vector fields and let {θ1, · · · , θn}

4



be a frame of co-vector fields on M, so that θi(Ej) = δi
j ; 1 ≤ i, j ≤ n. Let q ∈ M ; V ∈ TqM and

u ∈ IRm denote the control variables. We define a control system on TM by a second-order vector

field F : TM × IRm → TTM defined as follows. If π : TM → M denotes the projection operator,

then a second-order vector field is one that satisfies dπ ◦ F((q,V ),u) = (q, V ). Using the Levi-Civita

connection on M, we can write the above system as one on TM described by the equations:

q̇ = V = V iEi, and
DV

dt
= f(q, V, u) = f i(q, V, u)Ei. (1)

The conditions on the function f will be set forth in our theorem on necessary conditions. Such a

set of equations is useful in describing the equations of motion of an air vehicle that is subject to

aerodynamic forces and moments (as well as gravity) that depend on its orientation with respect

to its velocity vector, its altitude above sea level, current speed and the deflections of its control

surfaces.

Now, let q̂0, q̂f ∈ M, V0 ∈ Tq̂0M and Vf ∈ Tq̂f
M. Consider the space C2[t0, tf ] of twice-

differentiable maps q : [t0, tf ] → M that satisfy Equations (1), where tf > t0, q(t0) = q̂0, q(tf ) = q̂f ,

q̇(t0) = V0 and q̇(tf ) = Vf . Then along one such map q(·) the control system takes the form:

q̇(t) = V (t), and DV
dt = f(q(t), V (t), u(t)), where u(·) ∈ Cm[t0, tf ], the (m-vector valued) space

of continuous functions. Suppose that one is required to find a function u(·) such that the above

boundary conditions are satisfied by q(·) while minimizing:

J(u(·)) =
∫ tf

t0

L(q(t), V (t), u(t))dt. (2)

We need the following standard construction to describe the notion of variations of a curve. Let

(t, σ) → q(t, σ), t ∈ [t0, tf ] and σ ∈ (−ε, ε), ε> 0, be a parametrized family of curves satisfying

q(t, 0) = q(t); q(t0, σ) = q̂0; q(tf , σ) = q̂f ; q̇(t0, σ) = V0; q̇(tf , σ) = Vf (3)

For V (t) ∈ Tq(t)M and p1(t), p2(t) ∈ T ∗q(t)M, we define the associated variations: V (t, σ) =

V i(t, σ)Ei(q(t, σ)) ∈ Tq(t,σ)M and p1(t, σ) = p1i(t, σ)θi(q(t, σ)), p2(t, σ) = p2i(t, σ)θi(q(t, σ)) ∈
T ∗q(t,σ)M. Define the variational vector fields W (t) = δq(t) := ∂q

∂σ (t, 0) ∈ Tq(t)M, t ∈ [t0, tf ], with

W (t0) = W (tf ) = 0; and δV (t) := DV
dσ (t, 0) ∈ Tq(t)M, t ∈ [t0, tf ]. The variations in the input

are denoted by u(t, σ) ∈ IRm with δu(t) := ∂u
∂σ (t, 0) ∈ IRm. In the following, any quantity that

is described with the second variable σ suppressed, should be construed as having σ = 0 (so,

q(t) = q(t, 0)).

Then we have the following lemma proved by Noakes, Heinzinger and Paden.
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Lemma 2.2 [13] DV
dσ (t0, σ) = 0 and DV

dσ (tf , σ) = 0 for all σ ∈ (−ε, ε).

We need the following simple lemmata in the proof of the main theorem (Theorem 2.1).

Lemma 2.3 ∫ tf

t0

p1(t)(
Dq̇

dσ
(t))dt = −

∫ tf

t0

Dp1

dt
(δq(t))dt (4)

Proof We have Dq̇
dσ (t) = DW

dt (t) because the Levi-Civita connection is symmetric and [ ∂
∂t ,

∂
∂σ ] = 0.

Therefore:
∫ tf

t0

d

dt
p1(δq) dt =

∫ tf

t0

d

dt
<Σ−1p1, δq> dt =

∫ tf

t0

(
<

D

dt
Σ−1p1, δq> + <Σ−1p1,

D

dt
δq>

)
dt

p1(δq)
∣∣∣
tf

t0
=

∫ tf

t0

(
Dp1

dt
(δq) + p1(

D

dt
δq)

)
dt.

The result follows by noting that W (t0) = W (tf ) = 0. ¥

Lemma 2.4
∫ tf

t0

p2(t)
D

dσ

DV

dt
dt =

∫ tf

t0

(
(ΣR(Σ−1p2, V )V )δq − Dp2

dt
(δV (t))

)
dt (5)

Proof First we note that:
∫ tf
t0

p2(t) D
dσ

DV
dt dt =

∫ tf
t0

p2(t)
(
R(W,V )V + D

dt
DV
dσ

)
dt, by the definition

of the curvature tensor [14, 15], and the fact that [ ∂
∂t ,

∂
∂σ ] = 0. By the definition of the linear

isomorphism Σ, and standard properties of the curvature tensor [14] we have: p2 (R(W,V )V ) =<

Σ−1p2, R(W,V )V >=< R(Σ−1p2, V )V,W >= (ΣR(Σ−1p2, V )V )(W ). On integrating the second

term by parts and using Lemma 2.2, we have the claim. ¥

For p ∈ T ∗M, denote: [ω(f)]∗p := piω
i
j (f)θj = piω

i
kj fkθj . Let Ci

kj denote the structure constants

for the Jacobi-Lie brackets of the coordinate vector fields. Also denote: [C(f)]∗p:=piC
i
j (f)θj =

piC
i
kj fkθj . The following theorem is the main result of this paper. It establishes the first-order

necessary conditions for the curve (q0, V0, u0)(t), t ∈ [t0, tf ] to be optimal.

Theorem 2.1 Suppose that (q0, V0, u0)(t), t ∈ [t0, tf ] minimizes the cost function (2), while sat-

isfying Equations (1) and boundary conditions q(t0) = q̂0, q(tf ) = q̂f , q̇(t0) = V0 and q̇(tf ) = Vf .

Further suppose that f and L are differentiable functions of their arguments, and the linearized

system is controllable at the origin. Then there exists one-forms p1(t), p2(t) differentiable almost

everywhere on [t0, tf ] such that:

•
Dp1

dt = Lq(q0, V0, u0) + ΣR(Σ−1p2, V0)V0 − (f∗q (q0, V0, u0) + ω∗(f)− C∗(f))p2

Dp2

dt = −p1 + LV (q0, V0, u0)− f∗V (q0, V0, u0)p2
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• f∗u(q0, V0, u0)p2 = Lu(q0, V0, u0)

• the function H(q0, V0, u0, p1, p2)(t) = L(q0, V0, u0)(t) − p1(V0)(t) − p2(f(q0, V0, u0))(t) is a

constant for t ∈ [t0, tf ].

The proof of the above theorem will be given shortly. The assumption of controllability of the

linearized system is strong, and can be weakened along the lines of Pontryagin’s maximum principle

[3], once the symplectic 2-form on T ∗TM is written in frame co-ordinates. Such a symplectic form

is not intrinsic and depends on the Riemannian metric on TM as we show in a future publication.

In any case, the results of this paper will serve as a check for the first order necessary conditions

that can be obtained using more sophisticated tools of symplectic geometry. The proof here follows

Luenberger [16], and uses the Lagrange Multiplier theorem to obtain the existence of the one-forms

p1(·), p2(·). Please refer to Luenberger to see how the controllability assumption enters the proof.

(Proof of Theorem 2.1)

For each σ ∈ (−ε, ε), consider the augmented cost function:

J̄(q(·, σ), V (·, σ), p1(·, σ), p2(·, σ)) =
∫ tf

t0

(
L(q, V, u) + p1 (q̇ − V ) + p2(

DV

dt
− f(q, V, u))

)
dt, (6)

where q, V, p1, p2 in the integral are functions of (t, σ). By the Chain Rule:

∂

∂σ
L(q, V, u)(t, 0) = Lq(q, V, u)(t, 0)(δq(t)) + LV (q, V, u)(t, 0)

(
DV

dσ
(t)

)
+ Lu(q, V, u)(t, 0)(δu(t)).

(7)

∂

∂σ
f(q, V, u)(t, 0) =

(
fk

q (q, V, u)(t, 0)(δq) + fk
V (q, V, u)(t, 0)(

DV

dσ
(t)) · · ·

+fk
u (q, V, u)(t, 0)(

∂u

∂σ
(t))

)
Ek(t, 0) + fk(q, V, u)(t, 0)

DEk(t, 0)
dσ

(8)

Lets consider the last term in the above equation.

fk(q, V, u)(t, 0)
DEk(t, 0)

dσ
= fk(q, V, u)(t)ωi

jkδq
jEi = fk(q, V, u)(t)(ωi

kj − Ci
kj)δq

jEi. (9)

Now by Lebesgue’s Dominated Convergence Theorem, we have:

∂J̄

∂σ
(q, V, p1, p2)(·, 0) =

∫ tf

t0

(
∂

∂σ
L(q, V, u) + p1(

Dq̇

dσ
)− p1(δV ) + p2(

D

dσ

DV

dt
)− p2

∂

∂σ
f(q, V, u)

)
dt.

By Lemmas 2.3, 2.4 and Equations (7 – 9), we get:

∂J̄

∂σ
(q, V, p1, p2)(·, 0) =

∫ tf

t0

(
(Lq(q, V, u)− Dp1

dt
+ ΣR(Σ−1p2, V )V − (f∗q + [ω(f)]∗ − [C(f)]∗)p2)δq

+(LV (q, V, u)− p1 − Dp2

dt
− f∗v p2)δV + (Lu(q, V, u)− f∗up2)δu

)
dt

7



As the variations δq, δV and δu are arbitrary, subject to δq(t0) = δq(tf ) = δV (t0) = δV (tf ) = 0

we have the first two statements of the theorem.

To prove the last statement of the theorem, consider

Ḣ(t) =
d

dt
L(q0, V0, u0)(t)− Dp1

dt
(V0)− p1(

DV

dt
)(t)− Dp2

dt
(f(q0, V0, u0))(t)− p2(

D

dt
f(q0, V0, u0))(t)

= Lq(q0, V0, u0)(V0) + LV (q0, V0, u0)(
DV

dt
) + Lu(q0, V0, u0)(u̇)

− (
Lq(q0, V0, u0) + ΣR(Σ−1p2, V0)V0 − (f∗q (q0, V0, u0) + ω∗(f)− C∗(f))p2

)
(V0)(t)

−p1 (f(q0, V0, u0)) (t)− (−p1 + LV (q0, V0, u0)− f∗V (q0, V0, u0)p2) (f(q0, V0, u0))(t)

−p2

(
fq(q0, V0, u0)(V0) + fV (q0, V0, u0)(

DV

dt
) + fu(q0, V0, u0)(u̇) + f i DEi

dt

)

= 0,

due to the fact that <R(Σ−1p2, V0)V0, V0 >= 0 and fk(q, V, u)(t, 0)DEk(t,0)
dt = fk(q, V, u)(t)ωi

jkq̇
jEi =

fk(q, V, u)(t)(ωi
kj − Ci

kj)V
jEi. ¥

3 Applications

3.1 Cubic splines on Riemannian manifolds

Here we specialize Theorem 2.1 and recover the Noakes, Heinzinger and Paden formula for cubic

splines on Riemannian manifolds [13]. Let M be a parallelizable Riemannian manifold and let

q0, q1 ∈ M, V0 ∈ Tq0M and V1 ∈ Tq1M. Consider the problem: Minimize J(u(·)) =
∫ tf
t0
‖u(t)‖2dt

subject to: q̇(t) = V (t), DV
dt = u(t) = ui(t)Ei(t), and boundary conditions q(t0) = q0; q(tf ) =

qf ; q̇(t0) = V0; q̇(tf ) = Vf .

Thus we have f(q, V, u) = u and Σ is the identity matrix. Therefore, there is an identification of

vectors and co-vectors. Then, Theorem 2.1 asserts the existence of one-form sections p1(t), p2(t)

such that: Dp1

dt = R(p2, V )V − (ω∗(f) − C∗(f))p2,
Dp2

dt = −p1 and p2 = u, where we have used

the identification of vectors and co-vectors in the last equation. Thus D2V
dt2

= Du
dt = Dp2

dt = −p1

which implies D3V
dt3

= −Dp1

dt = −R(p2, V )V + (ω∗(f) − C∗(f))p2. Now ((ω∗(f) − C∗(f))p2)w =

p2i(ω
i
j (p2)−Ci

j (p2))wj = p2i ωi
jk pk

2 wj = ωi
k(w) pk

2 p2i = 0 for all w ∈ Ψ(M), because ωi
k = −ωk

i

by Proposition 2.1. Therefore, D3V
dt +R(DV

dt , V )V = 0, which is the equation for a cubic spline that

was first obtained by Noakes, Heinzinger and Paden [13].
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3.2 Rigid body translation and rotation

In this subsection, we consider the problem of numerically solving the optimal control problem (1),

(2) and (3) for a rigid body that is free to rotate and translate. Consider a rigid body with principal

moment of inertia matrix II and mass M (a scalar). The configuration space of a rigid body SE(3)

is the space of rotations given by the set of 3 × 3 matrices SO(3) = {Q |Q′Q = I; det(Q) = 1},
and space of translations IR3. Q is the orientation of the rigid body with respect to an earth-fixed

co-ordinate system, while b is the position of the center of mass of the rigid body with respect to the

origin of the earth-fixed co-ordinate system. The angular velocity of the body in the principal axis

system (called the body axis system) centered at the center of mass is defined as: Ω = Q′Q̇ where

Q′ denotes the transpose of Q, while the linear velocity of the center of mass expressed in the body

axis system is denoted by: v = Q′ḃ. If we define the skew-symmetrization of Ω′ = [Ω1, Ω2,Ω3]

to be Ω̂ =




0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


 then the Euler’s equations for a rigid body can be written in a

compact form as:

Q̇ = QΩ̂ (10)

ḃ = Qv (11)

Ω̇− II−1(IIΩ× Ω) = II−1Te (12)

v̇ + Ω× v = M−1Fe. (13)

where Te, Fe are the moments and forces acting on the body (expressed in the principal body-

axis system). In the notation of Theorem 2.1, q = (Q, b), V = (Ω, v) and u = (II−1Te,M
−1Fe).

Given (Q, b,Ω, v)(0), (Q, b,Ω, v)(1), and L(q, V, u) = 1
2 < u, u >, the optimal control problem is to

determine u(t); t ∈ [0, 1]. We set up a two-point boundary value problem using Theorem 2.1, and

then obtain a numerical solution using the Modified Simple Shooting method [7].

We will first find the Levi-Civita connection that corresponds to the Kinetic Energy metric:

K(Q, b, Q̇, ḃ) = −1
4trace(Ω̂ ˆIIΩ) + 1

2MḃT ḃ. Let {e1, · · · , e6} form a basis for the Lie algebra se(3) =

so(3)⊕ IR3 of the Lie Group SE(3), where e1, e2, e3 form a basis for so(3) and e4, e5, e6 form a basis

for IR3. Then one can form a parallel frame Ei = Qei, i = 1, · · · , 6 for TSE(3) via the lift of the

left translation action. For this parallel frame {E1, · · · , E6} let the structure constants Ck
ij for the

Jacobi-Lie bracket be given by:
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C3
12 = 1 C1

23 = 1 C2
31 = 1 C6

15 = 1 C5
16 = −1

C6
24 = −1 C4

26 = 1 C5
34 = 1 C4

35 = −1 Ck
ij = 0 for all other 1 ≤ i, j, k ≤ 6.

The Riemannian metric is defined via the following table:

< E1, E1 >= 1
2I1 < E2, E2 >= 1

2I2 < E3, E3 >= 1
2I3

< E4, E4 >= 1 < E5, E5 >= 1 < E6, E6 >= 1

< Ei, Ej >= 0 for all other 1 ≤ i, j ≤ 6.

We can compute the connection matrix for the rigid body using Proposition 2.1 and Theorem 4.25

of Frankel [14]. As θi(Ej) = δi
j , we have: dθi(Ej , Ek) = Ej(θi(Ek)) − Ek(θi(Ej)) − θi([Ej , Ek]) =

−θi([Ej , Ek]). Using Proposition 2.1 we compute the following connection matrix:

[
ωk

i

]
=


 α 03×3

03×3 β


 , where α =




0 ω1
32θ

3 ω1
23θ

2

ω2
31θ

3 0 ω2
13θ

1

ω3
21θ

2 ω3
12θ

1 0


 , β =




0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0




where ω1
32 = 1

2

(
−I1−I2+I3

I1

)
, ω1

23 = 1
2

(
I1−I2+I3

I1

)
, ω2

31 = 1
2

(
I1+I2−I3

I2

)
, ω2

13 = 1
2

(
I1−I2−I3

I2

)
, ω3

21 =
1
2

(
−I1+I2−I3

I3

)
, and ω3

12 = 1
2

(
−I1+I2+I3

I3

)
. Next, we compute the matrix ∇EE [14]:

[∇EjEi

]
=


 L M

03×3 03×3


 , where L =




0 ω3
12E3 ω2

13E2

ω3
21E3 0 ω1

23E1

ω2
31E2 ω1

32E1 0


 , M =




0 E6 −E5

−E6 0 E4

E5 −E4 0


 ,

Let X = (Ω, v), Y = (ξ, v̄) ∈ Ψ(SE(3)); Ω, v, ξ, v̄ ∈ IR3 and q(t) be the curve obtained by solving

the system q̇(t) = X; q(t0) = q̂0; t ∈ [t0, tf ]. Then along the curve q(·), we compute:

∇XY =




ξ̇ +
3∑

i,j,k=1

ξi ωk
i (Ej)ΩjEk

˙̄v − v̄ × Ω


 =


 ∇̄Ωξ

˙̄v − v̄ × Ω


 , (14)

where ∇̄ is the Levi-Civita connection on SO(3) compatible with the Kinetic energy metric K̄(Q, Q̇) =

−1
4trace(Ω̂ ˆIIΩ). In particular, DX

dt = ∇XX =


 Ω̇− II−1(IIΩ× Ω)

v̇ − v × Ω


 . We compute the curvature

tensor R(Y,X)X using Proposition 2.2. The curvature two-form Ωk
i matrix turns out to be:

[
Ωk

i

]
=


 P 03×3

03×3 R


 , where P =




0 Aθ1 ∧ θ2 Bθ3 ∧ θ1

Dθ1 ∧ θ2 0 Cθ2 ∧ θ3

Eθ3 ∧ θ1 Fθ2 ∧ θ3 0


 ,

10



and R =




0 Hθ1 ∧ θ2 Iθ3 ∧ θ1

Kθ1 ∧ θ2 0 Jθ2 ∧ θ3

Lθ3 ∧ θ1 Mθ2 ∧ θ3 0


 , where, A = −ω1

32 − ω1
23 ω3

12; B = −ω1
23 + ω1

32 ω2
13;

C = −ω2
13 − ω2

31 ω1
23; D = −ω2

31 + ω2
13 ω3

21; E = −ω3
21 − ω2

31 ω3
12; F = −ω3

12 + ω3
21 ω1

32 and

H = I = J = K = L = M = 0. Next, as R(Y, X)Ej = Ωi
j ((ξ, v̄), (Ω, v))Ei, we have:

R((ξ, v̄), (Ω, v))(Ω, v) =




AΩ2(ξ1Ω2 − ξ2Ω1) + BΩ3(ξ3Ω1 − ξ1Ω3)

DΩ1(ξ1Ω2 − ξ2Ω1) + CΩ3(ξ2Ω3 − ξ3Ω2)

EΩ1(ξ3Ω1 − Ω3ξ1) + FΩ2(ξ2Ω3 − ξ3Ω2)

03×1




. (15)

Finally, we compute the (ω∗(f)− C∗(f))p2 term that appears in the equation for Dp1

dt .

(ω∗(f)− C∗(f))p2 =




1
I1

(I2ω
2
13 + I3ω

3
12)η

2η3

1
I2

(I1ω
1
23 + I3ω

3
21)η

1η3

1
I3

(I1ω
1
32 + I2ω

2
31)η

2η1

03×1




. (16)

If we define the vectors (ξ, v̄1) and (η, v̄2) via the identification (ξ, v̄1)(t) = Σ−1p1(t) and (η, v̄2)(t) =

Σ−1p2(t) then, we can write the necessary conditions in terms of (Q, b, Ω, v, ξ, v̄1, η, v̄2). The full set

of equations are (10) - (13) along with u = (η, v̄2) and:

 ξ̇

˙̄v1


 = −




3∑
i,j,k=1

ξi ωk
ji Ω

jEk

−v̄1 × Ω


 + R((ξ, v̄), (Ω, v))(Ω, v)− (ω∗(f)− C∗(f))p2 (17)


 η̇

˙̄v2


 = −




3∑
i,j,k=1

ηi ωk
ji Ω

jEk

−v̄2 × Ω


−


 η

v̄2


 , (18)

with (Q,Ω, b, v)(0) and (Q,Ω, b, v)(1) specified.

4 Numerical Experiments

Equations (10)-(13), (17) - 18) along with u = (η, v̄2) constitute a two-point boundary value

problem. We used a modified shooting method technique [7] to numerically solve for the unknown

”Lagrange multipliers” (ξ, v̄1, η, v̄2) at initial time. The first equation (10) is a matrix equation

that we integrated using the well-known Rodriguez’s formula [17]:

Q(t + h) = Q(t)

(
I +

Ω̂
‖Ω‖sin(‖Ω‖h) +

Ω̂2

‖Ω‖2
(1− cos(‖Ω‖h))

)
, (19)
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where h is the time-step for integration. This results in a Q matrix that ”stays” on the group

SO(3) at each time-step.

The moments of inertia constants for the numerical simulation where I1 = 10; I2 = 7.5; I3 = 5.

The initial time t0 was set to 0 and the final time tf was set to 1.

We chose the initial states (Q,Ω, b, v)(0) and the desired final states (Q,Ω, b, v)(1) using the MAT-

LAB random number generator. Their values for a simulation run are listed in the following table

(to 2 significant digits).

Q(0) Ω(0) b(0) v(0)

0.572 0.817 0.079

−0.783 0.572 −0.246

−0.246 0.079 0.966

1.160

0.781

3.693

0.950

4.337

7.092

0.336

1.922

4.714

Qdes(1) Ωdes(1) bdes(1) vdes(1)

−0.268 0.963 −0.011

−0.838 −0.227 0.497

0.476 0.142 0.868

2.319

1.562

7.385

1.901

8.673

4.185

0.673

3.843

9.427

The modified simple shooting method involves the choice of a continuous, time-parametrized ref-

erence path that connects the initial and final points. For t ∈ [0, 1], we picked the reference

path to be: Qref (t) = Q(0) exp(φ̂t), where φ̂ = ln(Q(0)−1Qd), Ωref (t) = Ω(0) + (Ωd − Ω(0))t,

bref (t) = b(0) + (bd − b(0))t, vref (t) = v(0) + (vd − v(0))t.

The equations were integrated in the forward direction until at some time t ∈ (0, 1], we had

100 ∗ ‖ln(Q(t))− ln(Qref (t))‖+ ‖Ω(t)− Ωref (t)‖+ ‖b(t)− bref (t)‖+ ‖v(t)− vref (t)‖ ≥ 60. (20)

At this point, the initial guesses on the Lagrange multipliers were updated via the modified Newton’s

method until the sum on the left hand side is less than or equal to 0.5. Then we shoot forward

again until the inequality in (20) was satisfied and the iteration was repeated. The norm on the

orientation matrix was multiplied by 100 so that the final orientation is met accurately. The time

step for the integration was 0.02 seconds. The CPU time taken for the compuations run in a

MATLAB environment running on a 1.8 GHz PC was 73 seconds. The solution of the two-point

boundary value problem led to the following final states at t = 1:
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Q(1) Ω(1) b(1) v(1)

−0.268 0.963 −0.011

−0.838 −0.227 0.497

0.476 0.142 0.868

2.319

1.562

7.384

1.901

8.674

4.185

0.672

3.843

9.426

The initial value for the co-states (ξ, v̄1, η, v̄2)(0) was chosen at random using the MATLAB random

number generator (shown in the table in the left below) and converged to the table on the right

below.

ξ(0) v̄1(0) η(0) v̄(0)

0.145

0.718

0.662

0.432

0.446

0.508

0.528

0.573

0.361

0.336

0.173

0.086

ξ(0) v̄1(0) η(0) v̄(0)

−12.839

−18.404

−80.533

−8.620

−8.179

−122.807

−6.766

−9.251

−36.136

−7.527

−0.445

−58.068

Figures 1(a) – 1(d) show the results of the simulation. The ZYX Euler angles in Figure 1(a)

was computed according to: β = − sin−1(Q31); α = sin−1
(

Q32

cos(β)

)
; γ = sin−1

(
Q21

cos(β)

)
.

5 Conclusion

In this paper, we have made three new contributions. Firstly, we have derived first order necessary

conditions for an optimal control problem on a parallelizable Riemannian manifold, using frame co-

ordinates. These equations specialize to those of cubic splines on Riemannian manifolds that were

first discovered by Noakes, Heinzinger and Paden. Secondly, we have specialized the equations to

a rigid body translation and rotation problem. Thirdly, we have presented the results of numerical

experiments where we successfully computed the two point boundary value problem (TPBVP)

resulting from the necessary conditions.
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(d) Plot of linear velocities.

Figure 1: Rigid body rotation and translation problem
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